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|ON-HOSE INSTABILITY IN LONG PULSE INDUCTION
ACCELERATORS

George J. Caporaso and Jim. F. McCarrick
Lawrence Livermore National Laboratory, Livermore, California 94550 USA

Abstract

Theion-hose (or fast-ion) instability setslimits on the
dlowable vacuum in a long-pulse, high current
accelerator. Beam-induced ionization of the background
gas leads to the formation of an ion channel which
couples to the transverse motion of the beam. The
instability is studied analytically and numericaly for
several ion frequency distributions. The effects of beam
envel ope oscillations on the growth of the instability will
be discussed. The saturated non-linear growth of the
instability is derived analytically and numerically for two
different ion frequency distributions.

1 INTRODUCTION

With the advent of DARHT-2 and its 2 psec pulse
concern has surfaced over the ion-hose instability that may
arise from the beam'’s interaction with the channel created
from the background gas via collisional ionization[1]. We
consider a simple model with a t-dependent neutralization
(t hereis defined as the distance back from the beam head
divided by bc). The model we use for the channel isreally
more appropriate for a channel that has been preformed
however a more correct treatment (which is aso more
complicated) produces the same asymptotic result so we
adopt this one for simplicity. Lety represent the centroid
position of the beam and y represents the centroid position
of theion channel. We consider the case of a smooth
external focusing force (the case of solenoidal focusing is
well represented in the asymptotic solutions by replacing
k, the betatron wavenumber by k/2, one haf of the

cyclotron wavenumber).

Since we will also follow the non-linear devel opment
of the instability we choose as a starting point the
equations used by Buchanan to describe the coupling of a
beam and channel, each assumed to have a Gaussian spatial
profile [2]. The beam has Gaussian radius a while the
channel has Gaussian radius b such that the parameter R,

isgiven by
Roa +b [1]

This parameter results from integrating the force due to the
beam over the distribution of the channel and vice versa
The model is
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wheretg is the neutralization time of the background gas
and is approximately given by
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k2 is the coupling strength given by (I is the beam current
andlgis» 17 kA)
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and wg isthe ion (angular) "sloshing” frequency in the
field of the beam
, 2

W, = MCF{? (8]

Here M isthe ion mass, g the ion charge and c the speed
of light.

2 LINEARIZED EQUATIONS

If bothy and y are small compared to R, equations [2]
and [3] may belinearized as
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We will solve these equations for a“tickler” excitation,
that is

MOX) _ 16in(x)

o [11]

J0x) = p(0x) = E0) o

X [12]



These equations are appropriate for a beam and channel
system that are characterized by a single betatron and ion
“slosh” frequency. We are treating the case of solenoidal
focusing that we assume is dominant compared to the
focusing provided by the ion channel. Under this condition
it isagood approximation to neglect the spread in betatron
frequency that will result due to the non-linearity of the
beam-channel force which arises from the non-uniform
gpatia profile of the channel.

However, it is not a good approximation to ignore the
spread in ion resonance frequencies which arises from the
non-uniform spatial profile of the beam. To account for
this spread we use the “spread mass’ mode [3]. We
modify the model by splitting the channel centroid into
“filaments” labeled by a subscript 1 which characterizesthe
frequency of a particular filament. Equation [10] is thus
modified as ,

m +A

ax y)=0.

(v, - [13]

The position of the channel centroid is then found by
averaging the individual positions of the filaments over a
distribution function

T =0Of (AW, dh . [14]

For numerical work we will use the conventional definition
and take a “top hat” distribution where

1
f(x):6 for1- 0 £A£1. [15]
For analytic work we will use a Lorentzian distribution
(and equation [13] with 1% instead of 1):

f(r) = %“h [16]

A-1)+8°

where d is the half-width of the distribution and the range
of Lisfrom-e to +e.

3 EFFECTS OF ENVELOPE
OSCILLATIONS

We now wish to investigate the effects of an envelope
mismatch in the accelerator on the growth of the
instability. Since the dominant focusing for the beam is
provided by the solenoidal field, an envelope mismatch
will result in abeam radius that varies as

r, = a(l+using) [17]
where we have assumed a particular choice of phase for the
envelope oscillations without loss of generality. Because
the channel is formed by the beam we can expect that there
will be asimilar variation for the channel radius. Thusthe
ion resonance frequency will be periodically varying in z.
This is analogous to the case of “stagger tuning” the

resonant frequency of cavities to detune the beam breakup
instability.

We will investigate this effect by averaging over the
fast z and x oscillations of both the channel and beam
centroid positions [4].

First we write the factor g(z) as

o(c) =1+usin2c. [18]
Equations[9] and [13] then become
a2y X
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Then we may use the Laplace transform method
(transforming in x to s and back again) along with
equations [14] and [16] to obtain
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We now write y(z,X) as
y(E,x) = Alg, x)e (22

where A isregarded as a slowly varying amplitude such
that

[23]

Treatingm asasmall parameter, averaging equations [19]
and [21] inz over 2p, wefind after considerable algebra

o Ale,x)3, % (x- x) e

[24]

By Laplace transforming equation [24] in x to sand using
the method of steepest descents we find the asymptotic
growth rate

[25]
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The exponential growth given by equations[25] and [26] is
shown in Fig. 1.
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Fig. 1. Asymptotic growth as afunction of ufor d =.05.

We see that a small envelope mismatch can significantly
reduce the linear growth, particularly for alarge growth
rate.

4 NON-LINEAR DEVELOPMENT

It is clear from equations [2] through [4] that when the
beam and channel displacements become of order R, the
beam-channel force falls off significantly as compared to
the linear approximation used in equations [9] and [10].

We now extend equation [13] into the non-linear range
(for aLorentzian distribution) as

3 ) S
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By takingy = AT, x)e“ Vand 1, =B (¢, x)e"”

with A and B both dowly varying we may average
equations [2] and [27] to obtain (assuming B>>A)
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Equation [29] can be solved iteratively and integrated with

equation [16] to find B. This result can be used to
manipulate [28] into the form
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[29]

W2 @ [30]
N R L .
% 2-.
with  |BF @86£/gl+w2§ [31]

where 1y ° |AP, ¢ ©328°,and E° etx/ 4,

the number of e-folds of linear growth.

non-linear ion hose

1.00E+00

1.00E-01 |

 psi
=y

reiiim dal EEed
i e e

1.00E-02

1.00E-03 +=

Fig. 2. Channel and beam position vs. x at the end of the
accelerator from numerical solution. The blue curveisthe
channel centroid while the purple curve is the beam
centroid. Thetop hat distribution (equation [15]) was used
for q=0.59.
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Fig. 3. Channel and beam position vs. X from equations
[30] and [31] with d=0.0939. This maximum value of
the abscissa corresponds to 10 e-folds of linear growth of
the beam centroid position, asisthe case for figure 2.

5 CONCLUSIONS

We have shown that envelope oscillations that lead to
a periodic detuning of the ion resonant frequency
significantly reduce the linear growth rate of the
instability. In addition, when the amplitude of theion
channel motion becomes of the order of R,, the beam-
channel force fals off significantly from the linear
approximation. The betatron motion of the beam/channel
causes a periodic modulation of the ion resonant frequency
which increases the effective damping of the oscillations.
This effect leads to the saturation of the beam centroid
displacement at an amplitude that is of the order of 2dy
or about 10 - 30% of the channel amplitude.
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